This procedure is used to do the normal equation formation, reduction, solution and Inversion or partial reduction. The program lists the heresi record summary, the googe numbers and the variance factor summary. If any observation equations exceed a preset limit the equations are listed. If zero or negative terms are detected in the formation of the normal equations, the process is stopped. If a singularity is detected the process continues by fixing the term to one on the diagonal and zero's the row and column.
The user can optionally choose to list the normal equations, the full observation equation list, and the coordinate corrections for each pass.
The program requires the Adjsumy, Stadata,Nuispar, and Proneqs files. It generates the Normeqn (Normal equation file) and the Norminv (Normal equation inverse) file for the standard adjustment.
For a partially reduced normal equation adjustment (or lower block adjustment) it produces either a Rednor or a Prnfmt file as well as the Norminv file.
The Rednor file conforms to the Ghost position equation format and the Prnfmt conforms to the Exchange format.
Control of the Partial reduced process is done via the control record or by using program Updads. (record 6 character 9 and character 10 legal e s )
The Proneqsfile is changed to contain the normal equation block number for the Heresi record.
For a standard adjustment without error the Stadata and Nuispar files contain the adjusted values as well as estimates of the variance for each adjusted value.
To look at the residuals execute Lisres which produces a standard print file Lisres.
To look at error analysis execute Confel which produces a standard print file Confel.lis.
To look at individual stations use Updsta.
The partially reduced adjustment is followed at higher level by combining two or more lower level Rednor files and/or Prnfmt files using Assemble. If a higher level exists in the blocking scheme, the the file Rednor required for the next level is produced. If the top level, the parent block will be a complete adjustment.
Once the results at the top level are produced, they can be used to perform the back solution by executing Baksol < at each of the lower levels in turn.
Example [ denotes optional
adjcla <== Completes the adjustment
The user is queried for a
folder with adjustment files.
ADJCLA.LIS contains adjustment results
REC# FIRST LAST #COLS #COEFFS. #ZERO #NON ZERO %NZ ! FULL %NZ -------------------------------------------------------------------------- 1 1 393 393 17994 12879 5115 28% ! 77421 6% Number of terms 8757 Sum contributions 764559489.650634200 96561.5201063433800 normal equations 764559489.650635200 Top Minimum Googe Numbers ===================== Station Number and Name Coordinate N.E. Order Googe Number ======================================================================= 1 79A803 1 Latitude 376 0.1602587351159 2 776010 2 Longitude 248 0.1807207594423 3 79A803 3 Elevation 378 0.1844529645016 4 23611 2 Longitude 113 0.1856979232421 5 79A803 2 Longitude 377 0.1897159064060 6 58A028 2 Longitude 353 0.2049293223564 7 60A047 3 Elevation 393 0.2093673995950 8 82A671 2 Longitude 290 0.2119029294574 9 60A047 1 Latitude 391 0.2270142662477 10 60A047 2 Longitude 392 0.2333015808961 Top List of adjusted coordinates ============================== Station Latitude Correction X Prime Longitude Correction Y Prime Elevation Corection Z Prime ----------------------------------------------------------------------------------------------------------------------------- 128642 53.172989771 0.000000 0.0000E+00 -110.525801709 0.000000 0.0000E+00 661.9010 0.0000 0.0000E+00 223600 49.054028042 0.000000 -0.2817E-09 -113.275261999 0.000000 0.6702E-09 1460.9369 0.0000 0.6589E-10 323611 49.091843283 0.000000 -0.5627E-09 -110.240659856 0.000000 -0.1672E-09 974.0791 0.0000 0.2200E-09 427625 52.034748874 0.000000 -0.3453E-09 -113.533694380 0.000000 0.2497E-09 1008.9325 0.0000 -0.3402E-09 528662 53.332382518 0.000000 -0.7358E-09 -114.082165353 0.000000 0.3403E-09 771.9081 0.0000 -0.3244E-09 647605 53.243025301 0.000000 0.3504E-10 -117.471175329 0.000000 -0.5096E-09 1567.9492 0.0000 -0.3322E-09 7655016 51.291064858 0.000000 0.4752E-09 -109.591565221 0.000000 -0.2872E-09 737.5525 0.0000 -0.4516E-09 8656009 50.472919140 0.000000 -0.3769E-09 -110.553580763 0.000000 0.1166E-09 826.2073 0.0000 -0.5952E-09 9656025 50.521696799 0.000000 0.1192E-09 -114.173656713 0.000000 0.1504E-09 1248.4797 0.0000 0.2060E-09 10666004 53.334176679 0.000000 0.1905E-09 -113.395284157 0.000000 -0.2022E-09 676.8667 0.0000 -0.1667E-09 Top Variance Factor Summary ======================= Number of Directions = 0 Number of Distances = 0 Number of Azimuths = 0 Number of Position Equations = 0 Number of Posn Diff Equations = 825 Number of Elevation Differences = 0 Accumulated Observations = 0 Previously Eliminated = 0 Number of Normal Equations = 393 Degrees of Freedom = 432. Sum Equation R.H.S.**2 = 65306.91606866 Sum NE RHS * Reduced RHS = 0.4228931134254E-09 Accumulated VPV = 0.0000000000000E+00 Sum VTPV = 65306.91606866 Computed Variance Factor = 151.2 2 SOLUTIONS COMPLETE - Maximum corrections - X Prime = 0.000 (m) at [78A144 ] - Y Prime = 0.000 (m) at [82A703 ] - Z Prime = 0.000 (m) at [ 906046 ]Top